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Equilibrium morphologies of epitaxially strained islands
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An analytical expression of the free energy consisting of the strain energy, surface energy and interfacial
energy for the coherent island/substrate system, as well as the evolving relations of aspect ratio against
volume of the island, and misfit of the system, which provides a broad perspective on island behavior, is
obtained, and used to study the equilibrium shapes of the systems. A two-dimensional model assuming
linear elastic behavior is used to analyze an isolated island with elastic properties similar to those of the
substrate. The results show that in order to minimize the total free energy, a coherent island will adopt a
particular shape and height-to-width aspect ratio that are a function of only the island volume. The effect
of a misfit dislocation on the equilibrium shape of an island is in passing examined. These can serve as a
basis for interpretation of experiments.

PACS. 68.55.Jk Structure and morphology; thickness; crystalline orientation and texture – 62.25.+g
Mechanical properties of nanoscale materials – 68.35.-p Solid surfaces and solid-solid interfaces: Struc-
ture and energetics – 68.65.Hb Quantum dots

Models for coherent (dislocation-free) three-dimensional
(3D) island (quantum dot) formation in heteroepitaxial
thin film growth have recently been proposed [1–5]. Pre-
diction and control of the islands’ properties are essential
for their technological applications, such as quantum dot
lasers [6]. It is commonly accepted that depending on the
magnitude of misfit compressive strain and the interfa-
cial and surface energies, growth may proceed by layer-
by-island (Stranski-Krastanov) mode, or at a higher mis-
fit strain via direct islanding (Volmer-Weber) growth [7].
The islands tend to grow in fairly uniformly spaced ar-
rays (for reasons that are not yet understood), and under
given growth conditions they have well-defined sizes and
shapes. In Ge/Si, essentially four forms of islands are ob-
served: shallow mounds (prepyramids), square pyramids
with {105} facets, “hut clusters” — elongated pyramids
with {105} facets — and large domes with facets in sev-
eral orientations [8,9]. In the first stage of growth, shal-
low prepyramids appear that later convert T pyramids
to pyramids. Large domes form for Ge coverages above
five monolayers [10]. The island cross-sectional profiles
are commonly triangular shaped and arc shaped, as have
clearly been shown by transmission electron microscopy
dark-field images by several researchers [8,11]. Island char-
acteristic lengths are on the order of 10 nm.

For a restricted class of island profiles, namely, those
for which the island surface profile has uniform curvature
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was considered by Freund et al. [12] and Tersoff et al. [13].
With this restriction, the island configuration can be char-
acterized by just two parameters, the height-to-width as-
pect ratio and the volume. Here, equilibrium morphologies
of epitaxial islands are calculated under the assumption
that free energy of the system is composed of the elastic
strain energy and the surface/interfacial energy. Partic-
ular attention is focused on the relaxation of the elastic
strain in a coherent island as the configuration evolves in
a way which lowers its total free energy, and equilibrium
island morphologies corresponding to a given value of film
material deposited on the substrate surface are also deter-
mined. The effect of a misfit dislocation on the equilibrium
shape of the island is simply examined.

Let us consider a heteroepitaxial system consisting of
an isolated island and a semi-infinite substrate. The geom-
etry of the island has the regular pyramid with the square
base edge length l and the height h, or the dome-shaped
form with the circular base diameter Land the height H .
The island and substrate are assumed to be elastically
isotropic materials with the same values of the shear mod-
ulus µ and the same values of the Poisson’s ratio ν, which
is a reasonable approximation for a number of strained-
layer systems of technology interest, such as Ge/Si and
InAs/GaAs. Misfit stresses occur in the system due to the
misfit (geometric mismatch) between the crystal lattice
parameters ai and as of the island and the substrate, re-
spectively. For simplicity, here and in the following we con-
fine our consideration to the two-dimensional plane strain
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Fig. 1. Geometrical model of island/substrate system.

state model system with misfit strain ε0 = (as − ai)/as.
The configurations are depicted in Figure 1. The shape of
the island in the plane is taken to be a triangular shaped
[14], or an arc shaped [8,11], which corresponds to the
‘ridge’ of the 3D pyramidal shape, or the 3D dome shape,
respectively, but both the area of the island (volume per
unit depth normal to the plane of Fig. 1) and the aspect ra-
tio of the island are allowed to vary arbitrarily. The island
we describe in two dimensions is equivalent to elongated
island “ridge” in three dimensions [15]. If considered as
a three-dimensional treatment of elongated island, we are
assuming that there is no strain in the third dimension
(along the island ridge). Including a misfit strain in this
direction would modify only the length and energy scales
without changing any qualitative features of the morphol-
ogy [4], we expect all of the qualitative results here to
carry over to the full three-dimensional case.

The total strains εij of the system are the sum
of the elastic strains εe

ij and the misfit strains εm
xx =

ε0H(y), εm
yy = εm

xy = 0 (in writing the formulas, it has
been assumed that the film/substrate interface is perfectly
sharp, i.e. there is no mixing of the film and substrate ma-
terials. Where H(y) is Heaviside’s unit step function with
one in the island and zero in the substrate)

εij = εe
ij + εm

ij . (1)

Under the assumption of the plane strain state, total
stresses σij are related to the strains εij by the consti-

tutive equations

σxx = (λ + 2µ)εxx + λεyy, (2)
σyy = (λ + 2µ)εyy + λεxx, (3)
σxy = 2µεxy, (4)

where λ, µ are Lame constants, λ = 2µν/(1 − 2ν). With
equation (1) substituted into formulas (2)–(4), we get

σij = σe
ij + σm

ij , (5)

with the elastic stresses

σe
xx = (λ + 2µ)εe

xx + λεe
yy, (6)

σe
yy = (λ + 2µ)εe

yy + λεe
xx, (7)

σe
xy = 2µεe

xy, (8)

and the misfit stresses

σm
xx = (λ + 2µ)ε0H(y), (9)

σm
yy = λε0H(y), (10)

σm
xy = 0. (11)

The equilibrium equations of elastic deformation of the
system in the absence of body forces are

∂σe
ij

∂xj
= 0, (12)

repeated indices are summed.
From equations (6), (9)–(12), the equilibrium equa-

tions can be written as [16]

∂σxx

∂x
+

∂σxy

∂y
= 0,

∂σxy

∂x
+

∂σyy

∂y
− λε0δ(y) = 0, (13)

with the boundary conditions σijnj = 0 expressing the
fact that the surface of the system is stress free. Where
σij is stress tensor, n = (nx, ny) is the unit outward
normal vector to the surface, δ(y) is Dirac’s function.

From the mechanical effects of view, equations (13)
indicate that the misfit strain is equivalent to applying
a ‘concentration body force’ to the island/substrate inter-
face in y-direction. The strain energy change of the system
due to the formation of the island on the surface of the
substrate can be expressed by

Ee =
1
2

∫
V

−λε0δ(y)uy(x, y)dV

= −1
2
λε0

l(L)/2∫

−l(L)/2

uy(x, 0)dx, (14)

e.g. the strain energy is equal to the work done by the
external force (body force). Where V is the volume of
the system, uy(x,y) the displacement of the interface
in y-direction. It is energetically equivalent to the en-
ergy induced by applying stresses σyy(x, 0) = −λε0,
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σxy(x, 0) = 0 to the interface due to the island for-
mation, while the body force is vanishing. Thus, the dis-
placement of the interface induced by the interface stress
can be obtained from the results of contact mechanics [17]

uy(x, 0) =
1 − ν

2µπ
λε0

[(
x +

l(L)
2

)
ln

(
2x + l(L)

l(L)

)2

−
(

x − l(L)
2

)
ln

(
2x − l(L)

l(L)

)2

− 2l(L) ln 2

]
,

− l(L)/2 < x < l(L)/2. (15)

From equations (14) and (15), we obtain the strain ener-
gies for triangular shaped cross-sections and arc shaped
cross-sections

Ee
1 =

2µν2(1 − ν)
(1 − 2ν)2π

ε2
0

A

r
,

Ee
2 =

µν2(1 − ν)
(1 − 2ν)2π

ε2
0

A

f(R)
, (16)

respectively. Where f(R) = (1+4R2

8R )2arc cot 1−4R2

4R −
1−4R2

16R , A is the area of the island (volume per unit depth
normal to the plane of Fig. 1), r = h/l and R = H/L
are height-to-width aspect ratios of the two geometries,
respectively.

The changes in the surface energy of the system due
to formation of the island are

Es
1 =

√
2A/r(

√
1 + 4r2γi − γs + γis) (17)

and

Es
2 =

√
A/f(R)

(
1 + 4R2

4R
arc cot

1 − 4R2

4R
· γi − γs + γis

)

(18)
for triangular shaped and arc shaped cross-sections, re-
spectively. Here γi and γs denote the surface energy densi-
ties of the island and the substrate materials, respectively,
and γis denotes the energy density of the island/substrate
interface, which are related to the contact angle α by
the equilibrium Young’s equation, γi cosα = γs − γis,
where cosα = (1 + 4r2)−1/2 for triangular shaped and
cosα = (1 − 4R2)/(1 + 4R2) for arc shaped, respectively.
It is noted that, the present assumptions including the
form of the island and the validation of Young’s equation
is that the influence of the surface strain (stress) on the
surface energies is neglected. N. Moll et al. [18] addressed
the influence of surface stress on the equilibrium shapes
of strained quantum dots using a hybrid approach that
combines density functional theory calculations of micro-
scopic parameters, surface energies, and surface stresses
with elasticity theory for the long-range strain field and
strain relaxation, their results fully confirm the reason-
ability of the present treatment, and that the quantitative
differences between the present analysis and full physics
are small.

From the formula (16), it is easily validated that the
strain energy is a monotone decreasing function with the

aspect ratio r, or R for a given volume of the island (i.e.
a given value of material deposited on the surface of the
substrate), in other words, the shapes of the island with
a higher aspect ratio are strain-energetically favorable be-
cause that more and more of the elastic strain can be
relaxed as the island becomes taller and narrower. This
shows that the driving force for island formation is the re-
duction in the strain energy of a dislocation-free islanded
morphology as compared to a flat film. On the other hand,
with increasing the volume and the aspect ratio of the is-
land, the total surface energy is increased with increasing
area of the surface. The equilibrium shape of the island is
therefore determined by the total free energy consisting of
the strain energy and the surface energy.

The total free energies of the systems can be written
as

E1 = Ee
1 + Es

1 =
2µν2(1 − ν)
(1 − 2ν)2π

ε2
0

A

r

+
√

2A/r[
√

1 + 4r2 − (1 + 4r2)−1/2]γi, (19)

and

E2 = Ee
2 + Es

2 =
µν2(1 − ν)
(1 − 2ν)2π

ε2
0

A

f(R)

+
√

A/f(R)
(

1 + 4R2

4R
arc cot

1 − 4R2

4R
− 1 − 4R2

1 + 4R2

)
γi,

(20)

for the two shapes, respectively.
The free energy is a balance of strain energy and sur-

face energy terms, and a function of only the volume
and the aspect ratio of the island for a given coherent
island/substrate system. Equalizing its partial derivative
with the aspect ratio to zero gives

µν2(1 − ν)
(1 − 2ν)2π

ε2
0

√
A/2 − γi

3 + 4r2

(1 + 4r2)3/2
r5/2 = 0, (21)

and

µν2(1 − ν)
(1 − 2ν)2π

ε2
0

√
A

(
16R4 − 1

32R3
arc cot

1 − 4R2

4R
+

1 + 4R2

8R2

)

+
[
1
2
f1/2(R)

(
16R4 − 1

32R3
arc cot

1 − 4R2

4R
+

1 + 4R2

8R2

)

·
(

1 + 4R2

4R
arc cot

1 − 4R2

4R
− 1 − 4R2

1 + 4R2

)

+f3/2(R)
(

1 − 4R2

4R2
arc cot

1 − 4R2

4R
− 1

R
− 16R

(1 + 4R2)2

)]

γi = 0, (22)

for the two shapes, respectively. Which are functional re-
lations between the aspect ratios and the areas of the is-
lands when the epitaxial systems are at equilibrium state
(minimum free energy) at fixed volume of the island.

For growth of Ge on Si (100), the system parameters
have approximate values of ε0 = −0.04, the Poisson’s ra-
tio ν = 0.25, µ = 4×1011 erg cm−3 and the surface energy
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Fig. 2. Free energy E vs. island aspect ratio R for coherent
island/substrate system with area of island A = 160 nm2.

density γi = 2000 erg cm−2 [19,20]. For the area of the is-
land (volume per unit depth normal to the plane of Fig. 1)
A = 160 nm2 for which such size is a typicality observed
experimentally [21], and equivalent to the equilibrium size
of the island about 40 nm, the variations of the total free
energy with aspect ratio is shown in Figure 2. The varia-
tions of the aspect ratio with area at fixed misfit, and with
misfit at fixed volume are shown in Figures 3, 4, respec-
tively. Several features relevant to coherent island growth
are evident from equations (19)–(22) or Figures 2–4. First,
the variation of the total free energy with aspect ratio
shows that there is an equilibrium aspect ratio at which
the free energy is a local minimum at fixed island volume
(seen in Fig. 2). Second, That the equilibrium aspect ratio
is increased for increasing island volume implies that is-
lands become taller as they grow, consequently, for islands
of small volume, surface energy effects are more important
than elastic energy effects, the equilibrium aspect ratio
is expected to be small. On the other hand, for island of
larger volume, elastic effects are more important, the equi-
librium aspect ratio is to be larger. These trends are illus-
trated quantitatively in Figure 3 and equations (21)–(22).
Furthermore, that the aspect ratio is increased for increas-
ing misfit strain between island and substrate implies that
islands are taller for heteroepitaxial systems with larger
misfit strain and same or similar mechanical properties at
fixed islands volume (seen in Fig. 4). This, in turn, im-
plies an aspect ratio of about 0.23 for triangular shaped
cross-sections or 0.20 for arc shaped cross-sections, which
are obtained from equations (21) and (22) and similar to
what is observed experimentally [8].

An important problem connected with the growth of
self-assembled islands is the change of their shape. Min-
imum free energies of the two geometries with the same
volume are determined by equations (19) and (21), and

Fig. 3. Area of isaland A vs. island aspect ratio R for coherent
island/substrate system with misfit ε0 = −0.04.

Fig. 4. The ε-R diagram for A = 160 nm2.

equations (20) and (22), respectively. It follows that the
free energy for triangular shaped is only slightly smaller
than that for arc shaped when the area of the island is
smaller than about 1600 nm2, and the free energy for tri-
angular shaped is larger than that for arc shaped when
the area of the island is larger than about 1600 nm2. It is
shown in Figure 5. That is, in the first stage of growth,
pyramids appear that later convert to domes form with
increasing the volume of island, the critical area of island
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Fig. 5. Minimum free energy E vs. island area A for coherent
island/substrate system with misift ε0 = −0.04.

for the conversion is about 1600 nm2. Which is in good
agreement with the experiments [8,9].

The explicit analytical forms such as equations (19)–
(22), or Figures 2–4 are particularly valuable for identi-
fying fundamental regimes of behavior for strained-layer
growth. Besides the equilibrium shapes of coherent islands
discussed here, they can be used to qualitatively investi-
gate the equilibrium shapes of dislocated islands. Consider
the introduction of a dislocation of Burgers displacement
b parallel to the island/substrate interface. To estimate
the effect of the dislocation, assume that the Burgers dis-
placement is not confined at a single point, but is instead
spread out along the interface. In this case the effective
misfit strain is εeff

0 = ε0 − b/l [22]. The equilibrium shape
of the island is the same as that of an island with a mis-
fit strain lower than ε0 by an amount b/l. It is shown
from the equations (19)–(22) and Figures 2–4 that a de-
crease in the misfit strain results in a decrease in the free
energy and the island’s aspect ratio, which is consistent
with experiment observations [23]. Thus, a decrease in as-
pect ratio can be expected to follow the nucleation of a
misfit dislocation in an island. For Burgers displacement
b = −0.4 nm for which it is chosen to have the same sign
as the misfit strain so that the dislocation acts to relax
the elastic misfit strain, and l(L) = 40 nm, the equilib-
rium dislocated island has an aspect ratio of about 0.18
for triangular shaped, or 0.16 for arc shaped, which are
obtained from the equations (21) and (22).

A two dimensional model consisting of an isolated is-
land on a semi-infinite substrate with similar elastic prop-
erties is treated as a linearly elastic continuum, and is
developed to study the mechanics of the island growth
process in strained epitaxial systems. An analytical ex-
pression of free energy, which is a function of the island’s
volume, aspect ratio and film/substrate lattice misfit, as
well as the evolving relations of aspect ratio against vol-
ume of the island and misfit of the system, which are
new compared with the previous work, is achieved, and
then used to model the growth process of a coherent is-

land/substrate system. In a perfectly coherent system, for
a given island volume, there is a particular island shape
and height-to-width aspect ratio that result in a minimum
system free energy, and the shape’s transition occurs with
increasing volume. That is, for a growing island, it is pos-
sible to predict the preferred equilibrium island shape and
aspect ratio based on the minimization of the system free
energy. Once a film/substrate system forms an interface
dislocation, there is a new island height-to-width aspect
ratio that minimizes the system free energy. The system
reduces its free energy, low its height-to-width ratio.

This work is supported by the National Natural Science Foun-
dation of China (Grant No. 90101004)
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